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ABSTRACT
The business relationships between Autonomous Systems (ASes)
can provide fundamental insights into the Internet’s routing ecosys-
tem. Throughout the last two decades, many works focused on how
to improve the inference of those relationships. Yet, it has proven
difficult to assemble extensive ground-truth data sets for valida-
tion. Therefore, more recent works rely entirely on relationships
extracted from BGP communities to serve as "best-effort" ground-
truth. In this paper, we highlight the shortcomings of this trend. We
show that the best-effort validation data does not cover relation-
ships between ASes within the Latin American (LACNIC) service
region even though ~14% of all inferred relationships are from that
region. We further show that the overall precision of 96-98 % for
peering relationships achieved by three of the most prominent
algorithms can drop by 14-25 % when considering only peering
relationships between Tier-1 and other transit providers. Finally,
we discuss potential ways to overcome the presented challenges in
the future.
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1 INTRODUCTION
The Internet consists of many autonomous systems (ASes) that
exchange reachability information (also known as routes). Which
routes are made available to a neighbor often depends on business
relationships. While actual business relationships are rather com-
plex [25, 26], we often categorize them into three different types:
(i) provider-to-customer (P2C), (ii) settlement-free peering partners
(P2P), and (iii) relationships between ASes that belong to the same
organization called sibling-to-sibling (S2S).

Many researchers rely on accurate relationship information for
(i) simulations of routing incidents [48, 49, 59], (ii) IP-to-AS map-
ping [32, 46], or (iii) network (resource) management [40, 62]. Yet,
there is no organisation or entity that can provide authoritative
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knowledge for those relationships. Over the last two decades, this
lead to a large corpus of research focusing on inferring relationships
from, e.g., routing information [22, 24, 26, 27, 36, 38, 43].

Yet, there are two major problems that those inferences suffer
from: (i) limited visibility into the Internet’s AS interconnection
graph and (ii) lack of ground-truth validation data. The visibil-
ity problem is a well-known challenge in Internet topology re-
search [3, 16, 29, 52]. While various partial solutions have been
proposed (e.g., using data plane information [7, 18, 21], routing
policy databases [9], or BGP community encodings at IXP route
servers [28]), it is still a challenge to generate a comprehensive
AS-level typology that also captures, e.g., private network intercon-
nections [64].

The lack of ground-truth validation data has been pointed
out as a challenge many times (e.g., [24, 43, 60]), yet recently
proposed and evaluated algorithms (see, [36, 38]) rely entirely on
"best-effort" validation data compiled from BGP communities—a
technique initially introduced and used (among others) by Luckie
et al. [43].
To better understand the implications of this trend, this paper fo-
cuses on the basic question: How good is our "best-effort" validation
(data)? In particular, our work makes the following contributions
towards answering this question:

• Bias Analysis.We analyze to which degree the geograph-
ical and topological biases within the sets of inferred and
validated relationships match (§5). We uncover significant
mismatches: While the "best-effort" validation data covers
31 % of all links between ASes in the ARIN region, it only
covers less than 1 % of links in the LACNIC region. Yet, both
regions contain roughly 15% of the inferred relationships.

• Implication analysis.Weanalyze how such biasmismatches
may affect classification correctness for three (ASRank [43],
ProbLink [36], and TopoScope [38]) classification algorithms1
and uncover substantial drops in precision for certain groups
of peering links (§6). In particular, we observe that the near-
perfect precision of 96-98 % for the entire validation data set
drops by 14-25 % (depending on the algorithm) for peering
relationships between Tier-1 and transit providers.

• Future outlook: We discuss, in-depth, different approaches
for compiling less biased and more complete validation data
sets (§7) and highlight (i) the need for active discourse with
operators and (ii) how the routing ecosystem’s continuous
change can be exploited to over-sample validation data.

To allow for the reproduction of our results and to facilitate the
analysis of future validation efforts, we make our research code
publicly available via:

https://gitlab.mpi-klsb.mpg.de/lprehn/imc2021_breval
1While we would have also analyzed UNARI [22], the authors do not provide publicly
available artifacts.

https://doi.org/10.1145/3487552.3487825
https://doi.org/10.1145/3487552.3487825
https://gitlab.mpi-klsb.mpg.de/lprehn/imc2021_breval
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2 WHY SHOULDWE CARE ABOUT BIAS?
Biases commonly arise in all forms of classifications—whether one
looks at face detection [11], patient treatment [54], or criminal
behavior [53]. While those disciplines may have stronger social
impacts, the correctness of business relationships may have far-
reaching and unintended consequences when studying the Inter-
net’s routing ecosystem. For instance, Müller et al. [50] recently
proposed an algorithm that relies on the inferred relationships be-
tween Internet Exchange Point (IXP) members to identify spoofed
packets (i.e., packets with a forged source address). The misclas-
sification of a P2C as a P2P relationship could potentially result
in many packets being falsely flagged as spoofed. If an IXP would
publicly disclose, e.g., the number of spoofed packets per member,
the reputation of certain members could sustain damage.

Yet, how did bias affect this example? IXPs are often built with the
intention to keep local traffic local [3], i.e., they connect ASes within
the same geographical region.2 As most geographical regions
have their own operator meetings, conferences, and communities—
e.g., RIPE [57], NANOG [51], or APRICOT [5]—that release different
recommendations on how to operate certain types of networks, the
best practices for routing can differ among regions (and IXPs). For
instance, Marcos et al. [45] recently reported that the usage patterns
for AS path-prepending (a commonly used traffic engineering tech-
nique) vary strongly by region and over time. Similarly, topologi-
cal biases can arise from how ASes of different sizes or locations
within the Internet’s hierarchy select their peering policies [42].

In summary, features such as the geographical or topological
positioning of a network can greatly influence the routing deci-
sions taken by its operators. This may become important when
relationships are explicitly or implicitly3 used in narrow contexts,
e.g., only between members of an IXP. In such a case, the correct-
ness estimates that were obtained from a potentially larger base of
relationships may provide a false sense of safety which may result
in economical consequences (as in the example above).

3 BACKGROUND
In this section, we first give a brief introduction to selected4 relation-
ship inference algorithms, then provide details on previously used
techniques for obtaining validation data, and finally summarize the
already-known sources of bias in validation data.

3.1 Classification Algorithms
Lixin Gao was the first to describe the Internet as a strict hierarchy
in which customers receive transit from the providers "above" them
and redistribute routes according to economically incentives [24].
Based on this hierarchy, she described the notion of a "valley-free"
path—a path that travels strictly upwards, then to at most one AS
of the same height, and then strictly downhill. Using this property,
her proposed algorithm tries to maximize the number of valley-free
paths.

Rather than maximizing the number of valley-free paths, more
recent algorithms often first determine the clique of provider-free

2usually only a small fraction of ASes connect remotely [13].
3e.g., while using bdrmapit—a tool to map IPs to routers and ASes that relies on
relationship inferences—on paths obtained from a limited number of vantage points
4based on significance to our work and recency.

ASes at the "top" of the hierarchy and then iteratively infer rela-
tionships. In 2013, Luckie et al. [43] proposed ASRank—one of the
most-used classifiers till today. ASRank utilizes AS-triplets, a new
metric called "transit-degree", and an extensive list of heuristics
to classify relationships. Giotsas et al. later modified the ASRank
algorithm to adapt it to the IPv6 routing ecosystem [27].

In 2014, Giotsas et al. used routing information, IP paths, and ge-
olocation data to infer two more complex types of AS relationships:
partial-transit and hybrid relationships [26]. If a provider exports
routes towards its customers and peers but not towards its own
providers, then the provider and customer have a partial-transit
relationship. Further, two ASes have a hybrid relationship if their
observed relationships differ throughout various Points of Presence
(PoPs).

In 2019, Jin et al. proposed ProbLink—ameta-classifier that builds
upon an initial classification (e.g., fromASRank) [36]. The algorithm
assigns a probability to each link to be of a certain type based on,
e.g., the relationships of other nearby links, refines the selected
relationship based on the highest probability, and iterates those two
steps until convergence. UNARI [22] takes the idea of probability
one step further and produces a measure of certainty for each link
type as its outcome. TopoScope [38]—as the newest classification
algorithm—applies machine learning techniques on a large set of
link features to perform its classification. Notably, this algorithm
also predicts additional AS links that, despite note being visible,
might exist.

3.2 Validation Data
Compiling a set of ground-truth labels is crucial to properly evaluate
any classification algorithm. Yet, this step has proven to be rather
difficult for AS relationships. Before Luckie et al [43], only theworks
by Gao [24] and Dimitropoulos et al. [20] presented validation data
from a Tier-1 and via operator surveys, respectively.

In 2013, Luckie et al. compiled their validation data from (i)
directly reported relationships (e.g., by operators through a web
interface), (ii) relationships extracted from routing policies encoded
inWHOIS databases (more specifically, inside their autnum records)
via the Routing Policy Specification Language (RPSL), and (iii) re-
lationships extracted from BGP Community encodings within the
Internet Routing Registry (IRR) databases or public documentation
(e.g., ISPs that host such encoding on their website).

While relying on multiple databases allows for frequent re-
computation of validation data, the sources (ii) and (iii) suffer
from a set of well-known challenges. Most records within the
WHOIS databases are added and maintained voluntarily, hence,
some records get stale (i.e., become inconsistent with publicly visi-
ble routing information) over time [16].

While the same may be true for the publicly documented BGP
community encodings, those, in addition, suffer from ambiguity
problems. Simply put, BGP communities are just colon-separated
value pairs5 [14] that can be tagged onto routes. Which information
is encoded into/decoded from a specific BGP community depends
on the AS that sets/reads it. Ambiguity is introduced when a single
BGP community represents different meanings to (potentially over-
lapping) sets of ASes, e.g., while the BGP community 3356:666

5or triplets, see large BGP communities [31].
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could be recognized as an attempt to blackhole a route [39], AS 3356
(Level3/CenturyLink/Lumen) uses it to tag peering routes [56].

Despite those challenges, the data compiled by Luckie et al.
presents the first extensive source of validation information. Recent
classification efforts rely solely on re-computations of their third
data source—relationships from BGP communities [22, 36, 38].

3.3 Existing Insights into Validation Bias
Hard-to-Infer Links. Jin et al. [36] reported on sets of links for
which it is challenging to infer them correctly. They describe those
"hard" links as links with at least one of the following characteristics:
(i) node-degree < 100, (ii) observed by 50 − 100 vantage points, (iii)
neither incident to a vantage point nor a clique AS, (iv) stub links
for which there is no triplet containing two consecutive clique ASes,
and (v) links for which a simple top-down classification results in a
conflict. They further showed that even sophisticated algorithms
like ASRank wrongly infer many of the relationships for hard links
and that the validation data set is skewed towards links for which
it is easy to infer them correctly.

Clique & Vantage Point Links. Luckie et al. [43] show that
for their 2014 validation data set links incident to a clique AS are
over-represented while links between stubs and non-clique ASes
are under-represented. They also note that this disparity is mostly
due to the significant biased introduced by the community-based
data set—the validation data that has been used for the more recent
validations. Similarly, they report that the community-based data
set over-represents links incident to a vantage point over those
only remotely visible.

ComplexRelationships.As discussed in §3.1, AS relationships
can differ based on the PoP the link is observed at. Giotsas et al. [26]
reported that their improved algorithm exposed around 1k relation-
ships as hybrid and around 3k relationships as partial-transit. As
the inference of such relationships can be ambiguous, they should
be handled separately during the validation process.

4 OBTAINING & CLEANING DATA
In this section, we first describe how we obtain validation and infer-
ence data (§4.1). Afterward, we take a closer look at the validation
labels and identify entries that either need to be removed or handled
carefully (§4.2).

4.1 Obtaining Validation Data & Inferences
Validation Data.While ASRank’s validation data from April 2013
is publicly available at [12], ProbLink and TopoScope do not contain
validation data in their public repositories [35, 37]. Upon request, we
received the same validation data for both tools—12 snapshots un-
equally spread between January 2014 and April 2018. Each snapshot
was generated using the community-based relationship extraction
method described by Luckie et al. [43] for their ASRank validation.

Inference Data. The monthly generated inference snapshots
that are publicly available for ASRank, ProbLink, and TopoScope
only overlap throughout 2019. As this period is not covered by any
of our validation snapshots, we requested (and promptly received)
an inference snapshot for April 2018 generated by ProbLink. To pro-
duce comparable results for all three algorithms, we continue using
the inference and validation snapshots for April 2018 throughout

the remainder of the paper (unless explicitly specified otherwise).
Notably, we use the term "inferred links" to refer to all AS links
visible in the ASRank data set for April 2018.

4.2 Label Quality & Treatment
Spurious Labels.When taking a first look at the validation data,
we notice 15 AS relationships formed with AS 23456. This AS is
also known as "AS_TRANS" and is exclusively used to represent
32-bit ASNs for devices that only support 16-bit ASNs; therefore,
AS_TRANS does not represent an actual network and hence can not
have any business relationships. We further find 112 relationships
involving reserved (e.g., for documentation or internal use, see [34])
ASes that should neither be publicly routed nor be used to validate
business relationships.

Ambiguous Label Treatment.As briefly discussed in section 3,
two ASes can have different relationships based on the PoPs they
interconnect at [26]. In April 2018, the received validation data
contains multiple labels for 246 relationships involving 233 differ-
ent ASes. Arguably, those entries should be ignored for validation
unless the classification algorithm explicitly infers or handles them;
otherwise, it is ambiguous whether a simple relationship prediction
is correct. Interestingly, we find that those validation entries are
handled very differently in practice. If we treat an entry with mul-
tiple labels as P2P if it starts with P2P and otherwise as P2C, the
number of P2P and P2C links in the validation data for 2017 and
2018 matches exactly those reported in the Toposcope paper [38].
We observe a similar match for the numbers reported for 2017 in
the work by Jin et al. [36] if we treat an entry with multiple labels
always as P2C.

Sibling Labels. Sibling (S2S) relationships represent links be-
tween two ASes that belong to the same organization and, hence,
can use their resources interchangeably. When applying CAIDA’s
AS-to-Organisation data set [33], we find that 210 relationships
in our validation data set and 2800 of the inferred relationships
are actually sibling relationships and should be ignored during the
validation process (unless specifically handled by the classification
algorithm).

5 IS OUR VALIDATION DATA BIASED?
Regional Imbalance. As briefly discussed in section 2, how an
AS routes traffic may depend on its geographic region. To analyze
regional bias, we first map each ASN to a geographic service region
using IANA’s list of initial ASN assignments [34] and then refine
the mapping based on the daily delegation files published by the
Regional Internet Registries (RIRs) [2, 4, 6, 41, 58]. We abbreviate
AFRINIC, APNIC, ARIN, LACNIC, and RIPE NCC as AF, AP, AR,
L, and R, respectively. While IANA’s list bootstraps the mapping
for all ASes, the RIR delegation files correct the mapping for re-
sources transferred between different regions after IANA’s initial
assignments [55]. Notably, no mapping from ASes to geographical
regions is perfect; even with large amounts of active scanning, we
would neither be able to reliably measure all IPs (and respectively
infrastructure) that belong to an AS [8] nor would we be able to
perfectly geolocate them [15]. Yet, we argue that our mapping—
which relies on an AS’ organizational service region rather than its
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Figure 1: Regional imbalance: Fraction of
links (top) and validation coverage (bottom)
per geographical group with AF, AP, AR, L,
and R denoting AFRINIC, APNIC, ARIN, LAC-
NIC, and RIPE, respectively.
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Figure 2: Topological imbalance: Fraction
of links (top) and validation coverage (bot-
tom) per topological group with H, S, T1, and
TR denoting Hypergiants, Stub ASes, Tier-1
providers, and Transit providers, respectively.
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Figure 3: Transit degree imbalance for
transit links: consistently colored heatmaps
for inferred (top) and validatable (bottom)
links, binned by the transit degree of their
incident ASes.

infrastructure footprint—is still representative enough to provide
hints on regional biases, if they really exist.

Using this mapping, we separate AS links into different link
classes: If one of the involved ASes is reserved, we discard the link.
If both ASes belong to the same region, we mark the link class
as <region>° (e.g., AF° for links between two ASes in AFRINIC).
If the ASes belong to different regions, we mark the link class as
<𝑟𝑒𝑔𝑖𝑜𝑛1>-<𝑟𝑒𝑔𝑖𝑜𝑛2> where <𝑟𝑒𝑔𝑖𝑜𝑛1> is always the lexicographi-
cally smaller region, i.e., we treat AS links as undirected links.

Figure 1 shows the distribution of inferred relationships onto
link classes as fractions (at the top) as well as the validation cov-
erage (at the bottom), i.e., the fraction of links in a class for which
we have validation labels. We observe that most (~79 %) of the rela-
tionships that we infer are between ASes of the same region. Yet,
we observe drastic differences for the validation coverage among
region-internal relationships: Even though we infer roughly the
same number of AR° and L° relationships, we validate more than
~31 % of AR° links but less than 1 % of L° links.

Topological Imbalance. Next, we focus on whether the posi-
tioning of an AS in the Internet’s hierarchical structure yields a
mismatch in bias. First, we classify each AS into either "Stub" or
"Transit" based on whether the AS has at least one other AS in
its customer cone (see CAIDA’s customer cone data set—available
at [12]). Afterwards, we refine this basic mapping using two ad-
ditional data sources: We re-classify ASes as (i) "Tier-1" providers
based on a list from Wikipedia [63]6 and (ii) "Hypergiants" (i.e., the
largest content providers) based on the list generated by Böttger et
al. [10].
Figure 2 shows the topological balance based on those classes in
a similar style as Figure 1. We observe that we only have substan-
tial validation data for classes that involve Tier-1 ASes. While this

6which largely overlaps with the set of clique ASes inferred by ASRank.

insight in itself is not very new (compare [43] and [36]), we find
its impact to be more drastic than previously reported: For our two
majority classes, S-TR and TR°, that, in summary, contain 82 % of
all inferred links, we can only validate 6 % and 12 % of relationships,
respectively.

While most of the inferred links are in the S-TR class, this class
is rather uninteresting as it largely consists of P2C relationships
(67.8% according to validation data) for which all three classifiers
are well-known to perform near-perfect. Thus, we drill deeper into
our second largest class, links between Transit providers.

In particular, we want to understand whether the distribution of
AS "size" matches between inferred and validated TR° links. Figure 3
shows a heatmap over all TR° links in the inferred data (top) and the
validated data (bottom) where the x-axis shows the transit degree
for the larger incident AS while the y-axis shows the transit degree
for the smaller incident AS.7 We observe that the vast majority of
TR° links that we infer are between relatively small transit ASes
(i.e., in the left-bottom corner). This mismatches with the more
uniform distribution of our validation data. We further repeated
this experiment with two alternative metrics: the provider-peer-
observed customer cone—which relies on the correctness of the
inferred business relationships and might hence be biased—and the
node degree. The related figures (which can be found in Appendix
B) suggest an even stronger mismatch.

6 IS OUR VALIDATION BIASED?
Now that we have a basic understanding of regional and topologi-
cal bias mismatches in our validation data, we analyze how such
mismatches translate to differences in classification correctness. For
each of the tested classifiers, we calculate two confusion matrices
7The row above 150 and the column to the right of 1500 catch all transit degree equal of
larger than 150 and 1500, respectively. This prevents the few ASes with a substantially
larger transit degree from distorting the plot.
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Class 𝑃𝑃𝑉𝑃 𝑇𝑃𝑅𝑃 𝐿𝐶𝑃 𝑃𝑃𝑉𝐶 𝑇𝑃𝑅𝐶 𝐿𝐶𝐶 MMC
Total° 0.982 0.990 14216 0.996 0.992 30105 0.980
AP-AR 0.979 0.979 546 0.988 0.988 928 0.967
AP-R 0.985 0.987 892 0.968 0.965 338 0.952
AP° 0.992 0.992 502 0.994 0.994 648 0.986
AR-L 0.930 0.976 43 0.999 0.997 872 0.950
AR-R 0.956 0.978 1752 0.994 0.987 5707 0.957
AR° 0.926 0.954 617 0.998 0.996 12871 0.937
R° 0.990 0.996 9587 0.995 0.989 8318 0.985
S-T1 0.000 0.000 26 0.999 0.999 15533 -0.001
S-TR 0.994 0.988 2538 0.995 0.997 5334 0.987
T1-TR 0.839 0.955 641 0.996 0.985 7260 0.886
TR° 0.991 0.996 10219 0.980 0.952 1822 0.959

Table 1: Per group validation table for ASRank

Class 𝑃𝑃𝑉𝑃 𝑇𝑃𝑅𝑃 𝐿𝐶𝑃 𝑃𝑃𝑉𝐶 𝑇𝑃𝑅𝐶 𝐿𝐶𝐶 MMC
Total° 0.966 0.976 14216 0.988 0.983 30105 0.957
AP-AR 0.973 0.939 546 0.960 0.983 928 0.927
AP-R 0.973 0.995 892 0.986 0.927 338 0.940
AP° 0.976 0.989 502 0.991 0.981 648 0.969
AR-L 0.619 0.975 43 0.998 0.962 872 0.761
AR-R 0.953 0.951 1752 0.984 0.984 5707 0.936
AR° 0.951 0.859 617 0.993 0.998 12871 0.899
R° 0.971 0.988 9587 0.985 0.964 8318 0.954
S-T1 0.295 0.650 26 0.999 0.998 15533 0.437
S-TR 0.980 0.987 2538 0.994 0.991 5334 0.976
T1-TR 0.718 0.670 641 0.971 0.976 7260 0.667
TR° 0.982 0.996 10219 0.978 0.903 1822 0.930

Table 2: Per group validation table for ProbLink

Class 𝑃𝑃𝑉𝑃 𝑇𝑃𝑅𝑃 𝐿𝐶𝑃 𝑃𝑃𝑉𝐶 𝑇𝑃𝑅𝐶 𝐿𝐶𝐶 MMC
Total° 0.976 0.988 14216 0.995 0.989 30105 0.974
AP-AR 0.980 0.985 546 0.991 0.988 928 0.972
AP-R 0.983 0.994 892 0.985 0.959 338 0.961
AP° 0.986 0.992 502 0.994 0.989 648 0.980
AR-L 0.833 0.976 43 0.999 0.991 872 0.897
AR-R 0.947 0.975 1752 0.993 0.984 5707 0.950
AR° 0.930 0.943 617 0.997 0.997 12871 0.934
R° 0.984 0.993 9587 0.993 0.983 8318 0.976
S-T1 0.042 0.043 26 0.999 0.999 15533 0.041
S-TR 0.989 0.989 2538 0.995 0.995 5334 0.984
T1-TR 0.798 0.947 641 0.995 0.980 7260 0.858
TR° 0.989 0.996 10219 0.981 0.942 1822 0.954
Table 3: Per group validation table for Toposcope

(i.e., the number of True Positives, False Positives, True Negatives,
and False Negatives) that result from treating either P2C links or
P2P links as the "positive class."

Tables 1, 3, and 2 show the following classification correctness
metrics for links of different classes8: (i) precision (𝑃𝑃𝑉𝑋 ) and (ii)
recall (𝑇𝑃𝑅𝑥 ) when choosing P2P links (𝑋 → 𝑃 ) or P2C (𝑋 → 𝐶)
links as positive class9, the number of P2P (𝑋 → 𝑃 ) and P2C (𝑋 →
𝐶) links per class as 𝐿𝐶𝑋 , and Matthew’s correlation coefficient
(MCC) as symmetric evaluation metric10.

Simply put, the MCC takes all values of the confusion matrix into
account (i.e., it does not matter which class is treated as positive),
is relatively robust against class imbalance (i.e., the fraction of
validated P2P/P2C links in a class), and ranges between -1 and 1;
values close to 1/-1 indicate positive/negative correlation between
inference and validation while values close to 0 indicate correctness
similar to an unbiased coin-toss [19].

Each table further colors differences between the classification
correctness on the entire data set (Total°) as follows: If the per-class
value is at least 1 % larger than the value for the entire data set,
8we only show those classes that contained at least 500 relationships in summary
9As they only provide additional mixtures of precision and recall, we decided to not
show (balanced) accuracy and f1-score.
10The Fowlkes–Mallows index—as the second prominent symmetric evaluationmetric—
showed slightly less numerical change, yet similar results.

it is colored in green; if it is at least 1 %, 5 %, and 10 % lower, it is
colored in yellow, orange, and red, respectively.

The tables first confirm common wisdom: All three algorithms
perform near-perfect for P2C links. Yet, our evaluation further
shows that all algorithms struggle with the same P2P link classes,
namely AR-L, S-T1, and T1-TR. The low correctness for S-T1 links
was already reported by [36], yet we disagree with their conclu-
sion that "peering relationships between high-tier ASes and low-
tier ASes are becoming more prevalent." We observe that most
of those 26 links are formed with research ASes, anycast-based
DNS providers, content delivery networks, and cloud providers,
i.e., we observe that the problem lies in the broad aggregation of
many diverse businesses models into a single "Stub" class, rather
than a drastic change in policies. The overall correctness gap for
P2P-based T1-TR relationships of up to 25 % shows that future
classification efforts can still make substantial improvements for
certain link classes. Yet, the increase of the correctness gap from
ASRank to the two follow-up algorithms shows that following a
strategy of simply improving the overall classification error can
lead to substantial correctness degradation for classes that contain
fewer links. Finally, the reduced correctness for AR-L relationships
might hint towards unique routing policies in the LACNIC region
that are not yet captured by algorithms that were constructed and
validated almost exclusively on the policies present in the RIPE and
ARIN regions.

6.1 Case Study: AS714 Cogent Communications
To better understand the low performance for the T1-TR class, we
do a case study for AS714 (Cogent Communications). We chose
AS714 as it is involved in around half (54 out of 111) of all the links
that were wrongly inferred as P2P (i.e., those links that decreased
𝑃𝑃𝑉𝑃 ) by ASRank (which has the best precision and recall for this
class). For the remainder of this section, we call those links "target
links."

When analyzing the paths that include our 54 target links, we
were unable to find any triplet "𝐶 |𝐴𝑆714|𝑋 " for which 𝐴𝑆714|𝑋 is a
target link and𝐶 is another clique AS. This observation is critical as
such triplets are necessary for ASRank to arrive at a P2C inference
for𝐴𝑆714|𝑋 . While this provides us inside into what algorithmically
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caused the wrong inference, it does not explain why or how the
routing phenomena that underpin those algorithms have changed.

To analyze target links beyond the public routing data, we focus
on the 17 links that are also inferred to be P2P links in the most
recent (Sept. 2021) snapshot. This allows us to directly trigger Co-
gent’s looking glass to further investigate. We find that all the ASes
involved in the 17 links consistently tag the routes they redistribute
to 𝐴𝑆714 with the BGP Community 174:99111. This community
prevents Cogent from redistributing the received routes to other
peers—including all of the other clique members.

We discussed the issue with few of the involved operators and
also looked up the related RPSL routing policy objects via RADB.
We found that there are two reasons why ASes tagged this commu-
nity: Cogent only offers them partial transit (i.e., routes towards
customers but not towards peers) and inaccurate validation data12
(only 1 case).

7 DISCUSSION & OUTLOOK
Bias Mismatches. Throughout this paper, we demonstrated bias
mismatches between inferred and validated relationships. While
the features that we analyzed showed substantial mismatches, other
features could introduce similar (or even greater) ones. Even though
a more complex analysis of additional groups of "hard links" lies
beyond the scope of this paper, we provide a list of twelve potential
features for future analysis in the Appendix (§C).

Balance Through Sampling. While over-sampling of small
classes or under-sampling of large classes are commonly used tech-
niques to counteract biases, neither of them works (by default)
well on AS relationships. Under-sampling prominent classes would
result in a reduction of the already too small number of validated
relationships. In contrast, simple over-sampling would bias the im-
portance of specific error types (and often lead to over-fitting for
ML-based classifiers). While there are more complex over-sampling
methods (e.g., SMOTE [17], ADASYN [30], orMDO [1]) that synthet-
ically (based on interpolation) produce new yet similar data points,
theses techniques may introduce "incorrect" validation information
when working with high dimensional data [23]. Yet, we might be
able to leverage the heterogeneity and intrinsic, continuous change
of the routing ecosystem to our advantage. If we understand for
how long a certain set of relationships remains unchanged (e.g., via
frequent exchange with network operators), we may be able to find
a time frame after which the same AS can be re-sampled while still
providing a unique-enough, new data point.

Future Validation Data. Most of our current validation data
is passively obtained by scraping (poorly maintained) operator
databases. We argue that compiling more extensive validation data
requires active collaboration with network operators. In particular,
we must clearly communicate incentives (e.g., services that they
can benefit from) for why operators should accurately report (some
of) their relationships through the channels they most commonly
use (e.g., during operator meetings). A successful story using such
a do-ut-des approach is the route collector project "Isolario." In only
four years, the project acquired more peer ASes than RIPE RIS or
11Notably, this community is stripped before redistribution to customers; hence, it is
rarely visible from the public routing infrastructure.
12i.e., contrary to the community-based validation data, the link is a P2P link rather
than a P2C link.

Routeviews by partnering with HE.net. Whenever an AS connected
to Isolario, HE.net would use the provided data to improve its statis-
tics. The increase in reported size rendered the AS more attractive
as a peering partner—a benefit that convinced many networks to
continuously provide data.

Arguably, some operators may consider business relationships
more sensitive than the routing information observed by a single
(carefully selected) router. Yet, accurate information about a net-
work’s business relationships may be used to compile more valuable
assets than simple statistics. One example would be router config-
urations generated by the Peerlock system. Peerlock utilizes rela-
tionship information to generate snippets of router configurations
that prevent the redistribution of (accidental) route leaks [47].The
mechanism’s effectiveness may depend on the number of consid-
ered business relationships. Hence, operators might be willing to
provide (and continuously update) their relationships in exchange
for more secure and up-to-date Peerlock configurations. Similarly,
relationship information may also be used to engineer recommen-
dation systems for peering opportunities, i.e., rankings of beneficial
IXPs (to peer at) and ASes (to peer with) for a given network.

Notably, the targeted interaction with operators could also coun-
teract the current problem of missing validation data for an entire
region that was reported in §5.

FutureResearch Efforts.Our analysis in §6 showed that (negli-
gible) improvements in global classification correctness can severely
impact the correctness for classes with potentially fewer links. In
line with this finding, we argue that the current goal of negligibly
improving the overall correctness actually hinders progress in this
research space. Hence, we advocate that future efforts should be
evaluated against more diverse goals. Further, given our findings
from §4.2, we advocate for more careful and explicit handling of
spurious labels, sibling relationships, and complex relationships
during future validation efforts.
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A DOES PERFORMANCE CORRELATE WITH
VALIDATION COVERAGE?

Some of the link classes for which the inference algorithms perform
poorly have a higher validation coverage. In this section, we show
that there is no correlation between these two metrics. We set
up the following experiment: We uniformly sample a subset of
relationships and track their evaluation performance using the
metrics discussed in §6. We vary the subset size between 50 % and
99 % of the original set size by increments of 1 %. To get a more
stochastically robust result, we repeat this process 100 times for
each sample size. While we have done this analysis for all link
classes mentioned in §5, we now discuss the results for the 𝑇1 −
𝑇𝑅 class as it produced low-performance results while containing
more than 600 peering relationships. Figure 4, 5, and 6 show the
sample size on the x-axis against the precision (𝑃𝑃𝑉𝑃 ), recall (𝑇𝑃𝑅𝑃 ),
and MCC on the y-axis. While the figures mark the individual
performance measurements for each sampled set with a cross, they
also show the interquartile-range (IQR) and median across all 100
sampled sets. Even though we observe that the variance increases
with decreasing sample size, we neither observe an increasing nor
a decreasing trend for the performance metrics. Notably, the other
link classes (not shown) allow for similar conclusions.

B PLOTS FOR ALTERNATIVE METRICS
Figures 7, 8, and 9 show alternate variants of figure 3 for the cus-
tomer cone size (CCS), CCS when ignoring links incident to route
collector peers (i.e., vantage point ASes), and the node degree.

C POTENTIAL FEATURES
The following per-link metrics might help to identify additional
groups of ’hard links’:

(1) visibility over time
(2) number of prefixes redistributed via link
(3) number of addresses covered by those prefixes
(4) number of prefixes originated through the link
(5) number of addresses covered by those prefixes
(6) number of ASes that can observe (i.e., occur left from) the

link
(7) number of ASes that might receive traffic via (i.e., occur right

from) the link

(8) the relative difference in transit degree between the incident
ASes

(9) the relative difference in PPDC size between the incident
ASes

(10) and the number of common IXPs where both incident ASes
are present

(11) and the number of common peering facilities where both
incident ASes are present

(12) how the incident ASes behave, e.g., BGP serial hijackers [61]
vs MANRS participants [44]
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Figure 4: Correlation Analysis: Preci-
sion (P2P) for randomly drawn subsets of
𝑇 1 −𝑇𝑅 links with increasing size.
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Figure 5: Correlation Analysis: Recall
(P2P) for randomly drawn subsets of𝑇 1−𝑇𝑅
links with increasing size.
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Figure 6: Correlation Analysis: MCC for
randomly drawn subsets of𝑇 1−𝑇𝑅 links with
increasing size.
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Figure 7: Customer Cone Imbalance for
transit links
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Figure 8: Customer Cone Imbalance for
transit links (ignoring links with inci-
dent Route Collector Peers)
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Figure 9: Node degree Imbalance for
transit links
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